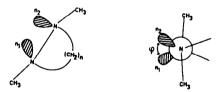
PHOTOELECTRON SPECTRA AND CONFORMATION OF CYCLIC N, N'-DIMETHYLHYDRAZINES

Paul Rademacher

Organisch-Chemisches Institut der Universität


44 Münster, Germany

(Received in UK 12 November 1973; accepted for publication 23 November 1973)

The conformation of symmetric hydrazines RR'N-NRR' can be determined by photoelectron (PE) spectroscopy.¹⁻³⁾ Assuming that the interaction between the electron lone-pairs n_1 and n_2 is determined mainly by the dihedral angle ψ , the angular dependence of the splitting between the two molecular orbitals $n_{+}=(n_1+n_2)/\sqrt{2}$ and $n_{-}=(n_1-n_2)/\sqrt{2}$ can be expressed by a function of the type

 $\Delta E = E(n_) - E(n_) = A \cos \varphi + B.$

The results obtained previously³⁾ lead to the following values of the coefficients: A=2.17 eV and B=-0.35 eV.

In order to find out how sensitive this method is towards small changes of φ , it has been applied to the cyclic N,N'-dimethylhydrazines <u>1</u> to <u>10</u>.

The PE-spectra⁴⁾ of <u>1</u> to <u>6</u> from 6.0 to 12.0 eV, where the ionization potentials of n₁ and n₂ are to be expected, are shown in figure 1. The bands of the π -electrons of the unsaturated compounds <u>5</u>, <u>8</u>, and <u>10</u>, which are also situated in this region, are easily identified in analogy to corresponding hydrocarbons.⁵⁾ Using Koopmans theorem⁶⁾ the orbital energies $E(n_+)$ and $E(n_-)$ are obtained from the spectra as the negative values of the vertical ionization potentials I_v . The data for the compounds <u>1</u> to <u>10</u> are collected in the following table.

Compound	I _v (n ₊)	I _v (n_)	Ι _ν (π)	∆e	φ
	(eV)	(eV)	(eV)	(eV)	(°)
1,2-Dimethyldiaziridine $(\underline{1})^{7}$	9.42	11.44		-2.02	140
1,2-Dimethyldiazetidine (<u>2</u>)	7.95	10.07		-2.12	145
1,2-Dimethylpyrazolidine ($\underline{3}$)	7.90 9.05	10.12 8.35 [*])		-2.22 0.70	150 61
1,2-Dimethylpiperidazine $(\underline{4})^{8}$	7.78 8.57	10.10 7.9 [*])		-2.32 0.67	155 62
1,2-Dimethyl-1,2,3,6-tetra- hydropyridazine (<u>5</u>)	8.89	8.13	9.47	0.76	59
1,2,4,5-Tetramethylhexa- hydro-1,2,4,5-tetrazine (<u>6</u>)	7.90 9.00	10.37 8.45		-2.47 0.55	168 65
2,3-Diaza-2,3-dimethyl- bicyclo[2.2.1] heptane (<u>7</u>) ⁹⁾	7.48	9.30		-1.82	133
2,3-Diaza-2,3-dimethyl- bicyclo[2.2.1] heptene-(5) (<u>8</u>) ⁹⁾	7.63	9.55	9.22	-1.92	136
2,3-Diaza-2,3-dimethyl- bicyclo[2.2.2]octane (<u>9</u>)	7•45	9.18		-1.73	130
2,3-Diaza-2,3-dimethyl- bicyclo[2.2.2]octene-(5) (<u>10</u>) ⁹⁾	7.51	9.52	9.30	-2.01	140

*) shoulder

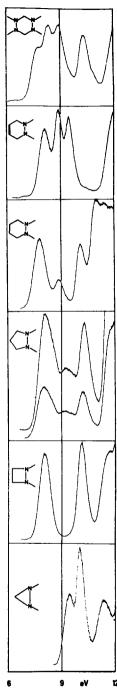


FIGURE 1.

In the series <u>1</u> to <u>4</u> φ increases significantly due to greater flexibility of the ring system. For <u>3</u> and <u>4</u> a dominant conformation with $\varphi = 150^{\circ}$ or 155° respectively and a second conformation with $\varphi \approx 60^{\circ}$ are observed. The methyl groups of <u>3</u> and <u>4</u> are therefore diequatorial in the more stable conformation and diaxial in the other one.⁹⁾ The six membered ring of <u>5</u> is fixed in a conformation with one axial and one equatorial methyl group as was also shown by NMR measurements.¹⁰⁾

On the basis of calculated conformational energies and dipole moments it was predicted that the predominant conformation of <u>6</u> possesses one pair of diaxial and one pair of diequatorial vicinal methyl groups.¹¹⁾ This prediction is verified by the PE-spectrum of <u>6</u>: Assigning the bands at 7.9 and 10.37 eV to the diequatorial and the bands at 8.45 and 9.00 eV to the diaxial dimethylhydrazine fragment respectively, dihedral angles of 168° and 65° are obtained.

In accordance with NMR results¹²⁾ it is found that in the bicyclic compounds $\underline{7}$ to $\underline{10}$ n₁ and n₂ as well as the methyl groups are in trans positions. The substitution of the methylene by an ethylene bridge does not lead to a significant change of Ψ . But the data suggest that for the unsaturated compounds <u>8</u> and <u>10</u> ψ is slightly larger than for the corresponding saturated compounds <u>7</u> and <u>9</u>. However, this might be due as well to a small interaction between n_ and the π -orbital leading to a stabilisation of n_ and thus to an increased split of n_ end n_.

The results for the compounds <u>1</u> to <u>10</u> demonstrate the high a advantage of PE spectroscopy for the conformational analysis of hydrazine derivatives. Contrary to studies on other compounds¹³⁾ they lead to the conclusion that the splitting between n_{+} and n_{-} is due predominantly to a direct interaction of n_{1} and n_{2} and that interactions with other orbitals have a minor effect.

REFERENCES and FOOTNOTES

- 1.) S.F.Nelsen and J.M.Buschek, J.Amer.Chem.Soc. 25, 2011 (1973).
- 2.) S.F.Nelsen, J.M.Buschek, and P.J.Hintz, ibid. 95, 2013 (1973).
- P.Rademacher, <u>Angew.Chem. 85</u>, 410 (1973); <u>Angew.Chem.Int.Edn</u>. <u>12</u>, 408 (1973).
- 4.) The PE-spectra were recorded on a Perkin-Elmer PS16-spectrometer using argon, xenon, and oxygen as calibrants.
- P.Bischof, J.A.Hashmall, E.Heilbronner, and V.Hornung, <u>Helv.Chim.Acta</u> <u>52</u>, 1745 (1969).
- T.Koopmans, <u>Physica 1</u>, 104 (1934); W.G.Richards, <u>Int.J.Mass Spectrom</u>. <u>Ion Phys. 2</u>, 419 (1969).
- 7.) The band at 10.01 eV is assigned to the highest occupied σ-orbital.
 A different assignment is given by E.Haselbach, A.Mannschreck, and W. Seitz, <u>Helv.Chim.Acta</u> <u>56</u>, 1614 (1973).
- 8.) Compare 2.)
- 9.) Compare 1.)
- 10.) J.E.Anderson, J.Amer.Chem.Soc. 21, 6374 (1969).
- 11.) R.A.Y.Jones, A.R.Katritzky, and R.Scattergood, Chem. Comm. 644 (1971).
- 12.) J.E.Anderson and J.M.Lehn, J.Amer.Chem.Soc. 89, 81 (1967).
- 13.) Compare e.g.: E.Haselbach, E.Heilbronner, A.Mannschreck, and W.Seitz, <u>Angew.Chem. 82</u>, 879 (1970); <u>Angew.Chem.Int.Edn. 9</u>, 901 (1970); H.Bock and B.G.Ramsey, <u>Angew.Chem. 85</u>, 773 (1973).